Gene set analysis controlling for length bias in RNA-seq experiments
نویسندگان
چکیده
منابع مشابه
Length bias correction for RNA-seq data in gene set analyses
MOTIVATION Next-generation sequencing technologies are being rapidly applied to quantifying transcripts (RNA-seq). However, due to the unique properties of the RNA-seq data, the differential expression of longer transcripts is more likely to be identified than that of shorter transcripts with the same effect size. This bias complicates the downstream gene set analysis (GSA) because the methods ...
متن کاملGrouped False-Discovery Rate for Removing the Gene-Set-Level Bias of RNA-seq
In recent years, RNA-seq has become a very competitive alternative to microarrays. In RNA-seq experiments, the expected read count for a gene is proportional to its expression level multiplied by its transcript length. Even when two genes are expressed at the same level, differences in length will yield differing numbers of total reads. The characteristics of these RNA-seq experiments create a ...
متن کاملControlling False Positive Rates in Methods for Differential Gene Expression Analysis using RNA-Seq Data
We review existing methods for the analysis of RNA-Seq data and place them in a common framework of a sequence of tasks that are usually part of the process. We show that many existing methods produce large numbers of false positives in cases where the null hypothesis is true by construction and where actual data from RNA-Seq studies are used, as opposed to simulations that make specific assump...
متن کاملComparison of normalization methods for differential gene expression analysis in RNA-Seq experiments
In recent years, RNA-Seq technologies became a powerful tool for transcriptome studies. However, computational methods dedicated to the analysis of high-throughput sequencing data are yet to be standardized. In particular, it is known that the choice of a normalization procedure leads to a great variability in results of differential gene expression analysis. The present study compares the most...
متن کاملGSAASeqSP: A Toolset for Gene Set Association Analysis of RNA-Seq Data
RNA-Seq is quickly becoming the preferred method for comprehensively characterizing whole transcriptome activity, and the analysis of count data from RNA-Seq requires new computational tools. We developed GSAASeqSP, a novel toolset for genome-wide gene set association analysis of sequence count data. This toolset offers a variety of statistical procedures via combinations of multiple gene-level...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BioData Mining
سال: 2017
ISSN: 1756-0381
DOI: 10.1186/s13040-017-0125-9